







CHAPTER V





SOFTWARE PARAMETRIC 

COST ESTIMATING

�
CHAPTER V



SOFTWARE PARAMETRIC COST ESTIMATING





SOFTWARE DEFINITION



	Software, in general, is a set of programs and accompanying documentation that direct computers to perform desired functions.  In simple terms, a software program is a set of instructions for a computer.  Software is critical, not only in the control of space based systems, but in virtually all current military systems.  For example, software controls aircraft engines, drivers and simulators;  it directs surveillance systems, handles space shuttle operations, and controls account, inventory and Management Information Systems (MIS).

	There are three basic types of software.  These are:

	*	System software (also known as the operating system) is a collection of programs that manages all the concurrent tasks being performed by a computer, including the execution of application software programs.

	*	Utility software is a set of programs that perform routine day-to-day tasks, such as listing or compressing data, copying files, etc.

	*	Application software performs specialized functions like Space Shuttle control and the MIS functions mentioned above, or other useful work not related directly to the operation of the computer itself.



	Most analysts are familiar with all three types of software as all are used in personal computers.  MS-DOS (Micro Soft Disk Operating System), for example, is a trade name for the operating system for Intel X86 Personal Computers.  LOTUS 123 and Micro Soft Excel are examples of application based software.  Listing a directory of user files is a utility software function.  The system software procured by the US Government is usually a complex combination of all three types of software.

THE IMPORTANCE OF SOFTWARE TODAY



	As discussed earlier, maintenance problems are a driving force behind re-engineering,  but a new business strategy now challenges software organizations.  It is called business process re-engineering or just business re-engineering.  The reader should never confuse business re-engineering with software re-engineering.  We have included this section to discuss how software re-engineering is being used to support business re-engineering.

	Business re-engineering is the fundamental rethinking and radical redesign of business processes  to achieve dramatic improvements in measures of performance, such as cost, quality, service, and speed.

	Traditionally, organizations tend to be structured around divisions such as manufacturing, marketing, administrative support, etc.  But this structure is often a barrier to quick responsiveness to a rapidly changing environment.  When confronted with a new objective, client, strategy, etc., every division must be mobilized from the top down.

	So how can software re-engineering help?

	Software was originally developed to support business functions within the traditional organizational structure.  Thus, we are left with legacy systems that are marketing-oriented, or manufacturing-oriented, etc.  Software re-engineering captures the design behind the software.  Using new tools and techniques currently available, this design-information can be broken up into “chucks” that are functionally integrated.  These “chunks” are then analyzed and regrouped around the newly identified business core processes.

	In many ways, this seems a lot like the process of translating from structured analysis to object-oriented analysis.  Some advocates of business re-engineering admit this is the case.  Both involve changing the basic approach to software and business.  Software (and organizations) should correspond to a meta-model of the real-world.  In the past, we attempted to force our software designs and organizations to conform to a structure that was basically incompatible with the real-world.  Users expressed their real-world requirements in terms of familiar objects (e.g. order forms , personnel records, etc.) which were translated into process oriented programs.  Maintenance also required a similar translation from the user’s modified needs to the process-oriented representation (i.e. program).  Now, with object-oriented analysis and business re-engineering, we are beginning to realign our software and organizational structure so that they correspond to real world objectives and needs.

	Another area where software re-engineering can aid business re-engineering is the identification of business rules from legacy course code.  Embedded within legacy systems are the implied rules that govern how the organization was run at the time the system was developed.  By extracting these business rules, an organization can better understand and, later, codify the rules by which they conduct business.

	Improving software quality and productivity is a major challenge faced by the Department of Defense (DoD) and the non-military community (DOE, NASA) as well.  In addition, providing affordable weapon system flexibility through software is a specific challenge for the DoD.

	Improving software quality is basic to how well software meets the requirements and expectations of the users.  It also means ensuring that software is adequate, reliable, and efficient.  Improving productivity means favorably increasing the ratio between the resources required to develop software and the size and complexity of the developed software.

	The growth in computer use and computer hardware capabilities has placed demands of increasing magnitude and complexity on computer software.  Software development processes, along with attendant methodologies, which may have worked well in the past, often break down when applied to the development of today’s software.  For example, studies show that every five years the sizes of software projects, as measured by Source Lines Of Code (SLOC), increase by an order of magnitude, and that the scaling of the development effort, demanded by the order-of-magnitude increases now require fundamental changes in the development process.   As the sizes of software projects have increased, software development processes based on individual programmers have given way to processes based on small teams and, in turn, small teams have given way to larger teams and so on.  Higher scaling of software development processes by merely increasing team sizes reaches limits on effective project management and resource availability.

	Today’s users of software demand software applications of greater size and complexity than before.  Advances in computer hardware capabilities are more than adequate to match the demands of users; however, software as it is developed using prevailing processes and methodologies is not.  The challenge is finding software development processes with attendant methodologies and technologies that meet user demands and that improve software quality and productivity.

	As a percent of total cost, software cost has grown disproportionally more than hardware cost (see Figure V-1).



�

FIGURE  V-1   HARDWARE/SOFTWARE COST TRENDS





	The military, like the business world today, sees software providing the versatility and leverage to achieve performance goals.  For example, software demonstrated its flexibility to quickly change weapon system capabilities in Desert Storm, the most newsworthy being the rapid development of a new software package for the Patriot Missile system to counter the SCUD.  Because of the versatility and leverage provided by software, the DoD’s appetite for software in the future has been described as “virtually insatiable.”

	Software is an increasingly important element in military systems of all kinds.  The capabilities of current and future military systems are dependent on the performance of the systems’ software.  As a system is upgraded or improved, much of the additional capability is achieved through new software.  In fact, many of the functions essential to mission or organizational success are partly or completely accomplished through the use of software.

	Unfortunately, software development and maintenance is an error-prone, time-consuming and complex activity.  Experience has revealed that many software development efforts falter because the management of these projects fall into several common traps.  These problems are:

	*  Lack of adequate requirements/specifications.

	*  Lack of attention to user needs and constraints.

	*  Lack of visibility into the development process.

	*  Lack of control at key points during development.

	*  Lack of standardization.

	*  Lack of attention to cost of ownership considerations.

	*  Lack of adequate documentation.

	*  Lack of adequate training and skills in estimating effort and schedule.



	Falling into these traps leads directly to increased development and support costs, schedule slips, and reduced systems capability.

	DOD-STD-2167A/498, Defense System Software Development, established uniform requirements for software development and is widely applied in all software application areas by all DOD components.  DOD-STD-7935A/498, DOD Automated Information System (AIS) Documentation Standards provides guidelines for the development and revision of documentation for information systems.  For embedded systems, DOD-STD-2167A/498 is appropriate.  For information systems, both DOD-STD-2167A/498 and DOD-STD-7935A are appropriate.  The documentation requirements of DOD-STD-7935A take precedence over those of DOD-STD-2167A/498.  In both application areas, tailoring of these standards must be done to reflect the unique needs and constraints of each project.

	The actual software development tasks will be accomplished by a development organization that is an element of, or subcontractor to, the system development contractor.  On occasion, this “contractor” may be a DOD agency.  The development contractor has the responsibility for delivering a software product that meets all contractual requirements.  Unfortunately, at the beginning of a contract’s development efforts, it us usually not possible to specify precisely and completely all of the characteristics of the final software products and their development processes.  Experience has shown that the difference between successful and unsuccessful development efforts is the vigor and timeliness of the direction given to the contractor by the Program Manager, supported by the Project Office.

	Figure V-2 indicates the relative impact of the penalty (cost) for delayed error correction during a software project’s life cycle, from almost no cost during preliminary design to high cost impacts during validation and operative stages.  BPR focuses on the later stages (maintenance) and the reduction of errors at those times by re-engineering the early phases.

	In today’s world of shrinking budgets, providing affordable, flexible software systems requires cost control and predictability that are not found in the traditional software development  processes.  Increasingly, the DoD demands that software be developed within predictable costs and schedule.  Enter, therefore, parametric cost modeling.



�

FIGURE  V-2   RELATIVE PENALTY-ERROR CORRECTION



THE SOFTWARE DEVELOPMENT PROCESS



	This section defines the basic process of software development as currently practiced by the majority of government contractors.  Major phases and software development activities are defined, as well as key milestones for the measurement of progress.



The Waterfall Model

	DOD-STD-2167A/498, the current prevailing standard guiding software development, has been interpreted as  mandating as specific process for use on all military acquisitions.  This process is represented by the “Waterfall” Model, which serves as the conceptual guideline for almost all Air Force and NASA software development.  The process described by the model involves development through specific, sequential stages.  There are specific objectives to be accomplished in each stage;  each activity must be deemed successful for work to  proceed to the subsequent phase.  The process is usually considered non-iterative.  Each phase requires the delivery of particular documentation products (Contract Data Requirements List - CDRL Items).  Many of the phases require successful completion of a government review process.  Critics of the “Waterfall” Model, in fact, find that the model is geared to recognize documents as a measure of progress rather than actual results.

	The eight major activities described in 2167A/498 are as follows:

	*  Systems Concept/System Requirements Analysis

	*  Software Requirements Analysis

	*  Software Parametric Cost Estimating

	*  Preliminary Design

	*  Detailed Design

	*  Coding and Computer Software unit (CSU) Testing

	*  Computer Software Component (CSC) Integration and Testing

	*  Computer Software Configuration Item (CSCI) Testing

	*  System Integration and Operational Testing



	A schematic overview of the Waterfall Model, representing concurrent hardware and software development, is presented in 2167A/498, and reproduced below as Figure V-3.



�

FIGURE  V-3   WATERFALL MODEL

	An alternative approach to software development involves the use of incremental builds.  With this approach, software development begins with the design of certain core functions to meet critical requirements, and each successive software “build” provides additional functions or enhances performance.  Once system requirements are defined and preliminary system design is complete, each build may follow the waterfall pattern for subsequent development phases.  Each successive build will usually have to be integrated with prior builds.



THE SOFTWARE COST ESTIMATING PROCESS



	The overall process of developing a cost estimate for software is not different from the process for estimating any other element of cost.  There are, however, aspects of the process that are peculiar to software estimating.  Some of the unique aspects of software estimating are driven by the nature of software as a product.  Other problems are created by the nature of the estimating methodologies.  Brooks, in his 1982 collection of essays, referred to large system software programming as a “tar pit.”  His description of one such project is typical of Space and Missiles Center and NASA experience with software development.  He states:



“The product was late, it took more memory than planned, the costs were several times the estimate, and it did not perform very well until several releases after the first.”



	Why is it so difficult to estimate the cost of software development?  Many of the problems that plague the development effort itself are responsible for the difficulty encountered in estimating that effort.  One of the first steps in any estimate is to understand and define the system to be estimated.  Software, however, is intangible, invisible, and intractable.  It is inherently more difficult to understand and estimate a product or process that cannot be seen and touched.  Software grows and changes as it is written.  When hardware design has been inadequate, or when hardware fails to perform as expected, the “solution” is often attempted through changes to the software.  This change may occur late in the development process, and sometimes results in unanticipated software growth.  In this case it is most important to create a picture, since the product can be highly ambiguous at this time.

	The software WBS (see Appendix B) is an excellent tool for visualizing the software product.  The WBS need not be complex, nor does it need to be highly detailed.  A simple product tree line drawing is often adequate for initial software estimates.  The hardware WBS can be a useful tool in developing the initial WBS for software.  There is usually a software Computer Software Configuration Item (CSCI) or similar module associated with each hardware Line Replaceable Unit (LRU).  As the program evolves, the initial or draft WBS should include all software associated with the program regardless of whether it is developed, furnished, or purchased.  If furnished or purchased software were omitted, it would not be possible to capture the cost of integrating preexisting or purchased software with the development software.

	The WBS should depict only major software functions, and major subdivisions.  It should not attempt to relate the software to the hardware it controls.  Each of the major software functional units can be modeled as a Computer Software Configuration Item (CSCI).  Lower level WBS elements can be modeled as a component.  Once the WBS is established the next step is to determine which estimating technique should be used for deriving the estimate.

	One of the most challenging tasks in project management is accurately estimating needed resources and required schedules for software development projects.  The software estimation process includes estimating the size of the software product to be produced, determining which functions the software product must perform, estimating the effort required, developing preliminary project schedules, and finally, estimating overall cost of the project.

	Size and number of functions performed are considered major productivity (“complexity”) factors during the software development process.  Effort is divided into labor categories and multiplied by labor rates to determine overall costs.  Therefore, software estimation is sometimes referred to as software cost estimation.

	Software life cycle models identify various phases and associated activities required to develop and maintain software, and provide excellent input into the software estimation process.  Some of the more common and accepted life cycle models include:  (1) Waterfall Model;  (2) Rapid Prototyping;  (3) Incremental Development Model;  (4) Spiral Development Model;  (5) Reusable Software Model;  and (6) the Transform Model [Boehm and Davis].  These models form a baseline from which to begin the software estimation process and should be reviewed and tailored to the proposed project.

	Software identified as mission-critical and developed for the United States government usually must be developed in accordance with DOD-STD-2167A/498.  This standard establishes uniform requirements for software development, and does not specify or discuss any particular method of software development.  However, it requires the inclusion and documentation of the major software development life cycle activities.  The standard also requires that reviews and audits be held in accordance with MIL-STD-1521B, “Technical Reviews and Audits for Systems, Equipment, and Computer Programs.”

	Additionally, structured approaches to sub-task identification are extremely beneficial in determining tasks and the required effort for each task.  The WBS is a method which strongly support this process.

	The software estimation activity should be approached as a major task and therefore should be well planned, reviewed and continually updated.  The basic steps required to accomplish software estimation are described in the following paragraphs.



Define Project Objectives and Requirements

	The objectives and requirements of a software project are usually established by upper management directive or by a contract Statement Of Work (SOW).  A clear set of objectives must be established in order to accurately identify project requirements.  Project requirements must also include specifications that must be met and applicable standards that must be followed.  Project objectives and requirements must be defined as clearly and precisely as possible in order to accomplish the project correctly, as well as identify tasks and ultimately estimate costs as accurately and early as possible.



Plan The Activities

	As previously mentioned, the software estimation activity should be planned as a major task.  The plan should detail the purpose, products, schedules, responsibilities, procedures, required resources, and assumptions made.  The plan should include which estimation methodologies, techniques, and tools will be used.

	The project should be organized into a hierarchical set of tasks to the lowest level of detail that available information will allow.  Additionally, a breakdown of documentation requirements and associated tasks should be defined (the detailed WBS).

	The WBS helps establish a hierarchical view and organization of the project.  The top level is the software system or final software product, and subsequent levels help identify tasks and associated sub-tasks and are used to define and encapsulate system functions.  Each of these tasks are divided into software development phases such as design, code and test, and integration.  All activities associated with each level must be defined including:  project planning and control, configuration management, product assurance and documentation.

	In addition to early development of detailed knowledge about the project, the WBS provides an excellent methodology for project data collection, tracking, and reporting.  During development of the project, each of the WBS tasks can be given a project budget, and a job number which is used for reporting time spent on each project phase or activity.  This provides an excellent project tracking and history data collection method.  Most government contracts require that such a Cost/Schedule Control System Criteria (C/SCSC) be established.  When the data are collected to an established WBS, the information can be placed in a database to be used in refining, tailoring, and customizing the software estimation process.  This information becomes an invaluable input to the software estimation process for future projects.

	Software project tasks/subtasks should be defined to the smallest component possible.  All technical aspects of the project should be understood as fully as possible since the more details known about the project the more accurate the estimates will be.  Newer methodologies are evolving which aid software developers in identifying various functions needed to support the project, such as Object-Oriented Analysis and Design (OOA, OOD).  Therefore, organizations should actively keep abreast of evolving technologies.



Software Estimation Risks

	The effects of inaccurate software estimation and schedule overruns are well known.  The problem stems from an inability to accurately assess risks associated with various software development projects.  Software estimation errors generally result from four major risk areas, which are:

	(1)	The inability to accurately size the software project.  This results in poor implementations, emergency staffing, and cost overruns caused by underestimating project needs.

	(2)	The inability to accurately specify a development environment which reflects reality.  This results in defining cost drivers which may be inappropriate, underestimated or overestimated.

	(3)	The improper assessment of staff skills.  This results in misalignment of skills to tasks and ultimately miscalculations of schedules and level of effort required, as well as either underestimating or overestimating project staffing requirements.

	(4)	The lack of well defined objectives, requirements, and specifications, or unconstrained requirements growth during the software development life cycle.  This results in forever changing project goals, frustration, customer dissatisfaction, and ultimately, cost overruns.



	All potential risks associated with the proposed software development project should be defined and weighed, and impacts to project cost should be determined.  This information should always be included in the software estimation process.



Estimation Methodologies

	Several methods (if possible) should be used during the software estimation process.  No one methodology is necessarily better than the other, in fact, their strengths and weaknesses are often complimentary to each other.  It is recommended that more than one software estimation methodology be used for comparison and verification purposes.  One method may overlook system level activities such as integration, while another method may have included this, but overlooked some key post-processing components.  Five of the methods discussed in Dr. Boehm’s book Software Engineering Economics are:  analogy, bottom-up, top-down, expert judgment, and algorithms (parametrics).

	These methods are often used in conjunction with each other and have been used for many years by managers of software projects without the use of any formal software estimation tools.  Software estimation tools have  only recently been developed which incorporate these methods, and many incorporate multiple methodologies.



	Analogy Method�PRIVATE ��

	Estimating by analogy means comparing the proposed project to previously completed similar projects where project development information is known.  Actual data from the completed projects are extrapolated to estimate the proposed project.  Estimating by analogy can be done either at the system level or the component level.

	The main strength of this method is that the estimates are based on actual project data and past experience.  Differences between completed projects and the proposed project can be identified and impacts estimated.  One problem with this method is in identifying those differences.  This method is also limited because similar projects may not exist, or the accuracy of available historical data is suspect.  Also, many projects for DOD weapon systems may not have historical precedents.  The analogy or comparative technique uses parametric approaches including the use of CER's.



	Bottom-Up Method

	Bottom-up estimation involves identifying and estimating each individual component separately, then combining the results to produce an estimate of the entire project.

	It is often difficult to perform a bottom-up estimate early in the life cycle process because the necessary information may not be available.  This method also tends to be more time consuming and may not be feasible when either time or personnel are limited.



	Top-Down Method

	The top-down method of estimation is based on overall characteristics of the software project.  The project is partitioned into lower-level components and life cycle phases beginning at the highest level.  This method is more applicable to early cost estimates when only global properties are known.

	Advantages include consideration of system-level activities (integration, documentation, project control, configuration management, etc.), many of which may be ignored in other estimating methods.  The top-down method is usually faster, easier to implement and requires minimal project detail.  However, disadvantages are that it can be less accurate and tends to overlook lower-level components and possible technical problems.  It also provides very little detail for justifying decisions or estimates.



	Expert Judgment Method

	Expert judgment involves consulting with human experts to use their experience and understanding of a proposed project to provide an estimate for the cost of the project.

	The obvious advantage of this method is the expert can factor in differences between past project experiences and requirements of the proposed project.  The expert can also factor in project impacts caused by new technologies, applications, and languages.  Expert judgment always compliments other estimation methodologies.  One disadvantage is that the estimates can be no better than the expertise and judgment of the expert.  It is also hard to document the factors used by the expert who contributed to the estimate.



	Parametric Or Algorithmic Method

	The algorithmic method involves the use of equations to perform software estimates.  The equations are based on research and historical data and use such inputs as Source Lines Of Code (SLOC), number of functions to perform, and other cost drivers such as language, design methodology, skill-levels, risk assessments, etc.

	Advantages of this method include being able to generate repeatable results, easily modifying input data, easily refining and customizing formulas, and better understanding of the overall estimating methods since the formulas can be analyzed.  However, the results are questionable when estimating future projects which use new technologies, end equations are generally unable to deal with exceptional conditions such as exceptional personnel in any software cost estimating exercises, exceptional teamwork, and an exceptional match between skill-levels and tasks.  However, any estimating approach can be impacted by these drawbacks, and care should be exercised when accounting for such concerns.  Additionally, sometimes algorithms are developed within companies for internal use and many be proprietary as well as more reflective of a specific company's performance characteristics.



Software Cost Estimating Standards

	As stated earlier, very often the government requires software development to follow DOD-STD-2167A/498, which is the Department of Defense standard that specifies the overall process for the development and documentation of mission critical software systems.  This standard also requires technical reviews and audits to be conducted in accordance with DOD-STD-1521B.

	Other standards that may affect the estimating process are:  MIL-STD-499A, MIL-STD-498, Engineering Management; MIL-STD-490A, Specification Practices; MIL-STD-480B, Configuration Control-Engineering Changes, Deviations and Waivers; DOD-STD-1703, Software Products Standards.  Software developed in accordance with these standards generally requires more resources and is more time consuming.  Therefore, the software estimation process must include and adjust for these requirements where applicable.



Benefits

	When the software estimation process is performed correctly, the benefits realized far outweigh the cost of doing the estimating.  Some of the major benefits include lowering the cost of doing business, increasing the probability of winning new contracts, increasing and broadening the skill-level of key staff members, acquiring a deeper knowledge of the proposed project prior to beginning the software development effort, and understanding, refining, and applying the proper software life cycle mode.

	As these software estimating components are enhanced, refined, and continually applied, the software estimating process, associated tools, and resulting products attain higher levels of quality and ultimately benefit all.



EXAMPLES OF PARAMETRIC SOFTWARE COST ESTIMATING



	Accurately estimating the resources and time needed for a software development project is essential even for the survival of the project.  In the great majority of cases, the resources and time actually expended are much more than the initial planning estimates.  An approach for estimating the resources and schedule needed for software development is the use of a software cost and schedule model that calculates the resources and time needed as a function of some other software parameters (such as the size of the program to be developed).

	The more times an organization has developed software of the same size and complexity for the same type of application, the more accurate the estimates for a new project will be.  Unfortunately, when the Program Manager attempts to extrapolate information from small and less complex software development efforts to larger, more complex software in different application areas, the results are often unreliable.  The problem results from and exponential relationship between software size and development effort.

	For example, one very widely used parametric software cost model is the Constructive Cost Model (COCOMO).  The basic COCOMO model has a very simple form:



MAN-MONTHS = K1 (Thousands of Delivered Source Instructions) *K2�
�
Where K1 and K2 are two parameters dependent on the application and development environment.�
�


	Estimates from the basic COCOMO model can be made more accurate by taking into account other factors concerning the required characteristics of the software to be developed, the qualification and experience of the development team, and the software development environment.  Some of these factors are:

	*  Complexity of the software

	*  Required reliability 

	*  Size of data base

	*  Required efficiency (memory and execution time)

	*  Analyst and programmer capability

	*  Experience of team in the application area

	*  Experience of team with the programming language and computer

	*  Use of tools and software engineering practices

	*  Required schedule



	Many of these factors affect the person months required by an order of magnitude or more.  COCOMO assumes that the system and software requirements have already been defined, and that these requirements are stable.  This is often not the case.

	Another popular software cost model is the Putnam model.  The form of this model is:



		PERSON YEARS=  (Lines of Delivered source Instructions)

					Ck (Development Time in Years)



		Where:  CK is a parameter dependent on the development environment.

		CK has a range from-6,500 (poor) to 12,500 (excellent).



	The Putnam model is very sensitive to the development time:  decreasing the development time can greatly increase the person-months needed for development.

	One significant problem with the COCOMO, PUTNAM and similar models is that they are based on knowing, or being able to estimate accurately, the size (in lines of code) of the software to be developed.  There is often great uncertainty in the software size.  Computer programs, several of which are available for PCs, have been developed to implement variations of the COCOMO and other cost models.

	Another estimating approach, called Function Point Analysis (FPA), is used to estimate both the size of the software to be developed and the effort required for the development.  In FPA, you determine the number and complexity of inputs, outputs, user queries, files, and external interfaces of the software to be developed.  The sum of these numbers, weighted according to the complexity of each, is the number of function points in the system.

	This function point number is directly related to the number of end-user business functions performed by the system.  Using data from past projects, it is possible to estimate the size of the software needed to implement these function points (typically about 100 source language statements are needed for each function point) and the labor needed to develop the software (typically about 1 to 5 function points per person month).  FPA has been developed and applied almost exclusively in Information System applications.  A variation, called feature point analysis, has been defined for other application areas.  The chief difference between feature point analysis and FPA is that the number and complexity of the algorithms to be implemented are considered in calculating the number of feature points.

	Do not depend on a single cost or schedule estimate.  Use several estimating techniques or cost models, compare the results, and determine the reasons for any large variations.  Document the assumptions made when making the estimates.  Monitor the project to detect when assumptions that turn out to be wrong jeopardize the accuracy of the estimate.



PARAMETRIC SOFTWARE COST ESTIMATING TOOLS



	As mentioned earlier, one of the critical problems facing software development project managers is determining accurate software estimations for level of effort, schedules, SLOC, and overall costs.  Since trends indicate that the cost of producing software products is escalating and consuming an ever increasing percentage of budgets, the need to quickly generate more reliable estimates is becoming even more important.

	For many years, project managers have relied on software development teams to estimate the cost of producing software products.  This has always been a subjective and intuitive process influenced by such factors as personality, opinions, and pressure to win contracts.  The process has encouraged low estimates and short schedules, the results of which have been devastating to companies and projects, including projects of national importance.

	For these reasons, software parametric cost estimating tools have been developed since the late 1970's to provide a better defined and more consistent software estimating process.  These tools have been developed from historical data collected from thousands of software projects, as well as research performed to identify key productivity factors.  Early tools were hampered by the scarcity of reliable data; however, as more data became available, estimating tools were improved and continued to evolve.  Most parametric software estimation tools use algorithms, and some of the more advanced tools are rule-based or knowledge-based as well as interactive.

	Good software estimating tools do not always guarantee reliable software estimates.  If inaccurate software size estimates and attribute ratings are input, then inaccurate estimates will result.  Additionally, organizations need to customize the software estimation tools to their own development environment (the calibration process was discussed previously in Chapter IV).

	This customization requires collecting and maintaining historical data from current and past projects to provide the necessary inputs required for the software estimating tools.  The software development organization should establish a staff that is thoroughly trained in the software estimating process and available estimating tools, and they should perform all the software estimating activities.  Experience and existing tools dictate what project development information needs to be maintained.



Desired Functional Capabilities Of Parametric Tools

	The following section provides an overview of some of the more popular and available software estimating tools, including the major functional capabilities which software estimating tools should perform, and the input data required to support the use of those tools.

	Major functional capabilities that should be considered when selecting a software estimating tool are listed below.  Depending on the organization's needs, the level of significance of these capabilities may differ, and should be considered accordingly.  In addition, the organization should analyze their own needs and identify additional desired capabilities specific to them.  The organization should then match available tools with overall needs.

	In general, the tool should:

	(1)	Allow easy adaptation to an organization's development environment - This means the tool needs to be capable of being customized to fit the using organization's development environment.  Customization includes allowing the developer to define applicable inputs, as well as to modify coefficients and exponents of the equations used by the tool.  This feature will allow continuous improvement to the estimation capability of the tool since the organization's historical data and current project data will be included in the software estimate generated.

	(2)	Be relatively easy to learn and use - The tool should be  well documented including methodologies and equations used.  Documentation should be at a level that is understandable.  The tool should include help menus and examples sufficient to assist the support staff in answering questions and providing training.  The amount of formal training required to use the tool should be relatively minimal, required inputs should be well defined, and visibility into internal equations and theories should be provided.

	(3)	Provide early estimates - The tool should be capable of generating estimates early and quickly in the life cycle process when requirements and development environments are not fully defined.  The tool should also allow task detail to be added incrementally as functions, activities, and other information becomes more completely defined.  Since there are many unknowns early in the estimating process, the tool should reflect degrees of uncertainty based on the level of detail input (risk analysis).  In general, the tool should provide sufficient information to allow initial project resource planning as well as reasonably early "go/no go" decisions.

	(4)	Be based on software life cycle phases and activities - The tool should be capable of providing estimates for all phases and activities of the most commonly used software life cycle models.  It should allow the organization to decompose and map software development tasks into those phases and activities, as well as support a program WBS.  In addition, it should allow for "what if" situations and include factors for design trade-off studies.

	(5)	Allow for variations in application languages and application function - It is very important that the tool provide estimates specific to the application of the software project since the associated estimating equations, cost drivers, and life cycle phases should be unique to each application are.  General application categories include Information Systems (IS), simulation and modeling systems, real-time systems, accounting systems, and systems based on higher-order languages.

	(6)	Provide accurate size estimates - The size of a software development project is a major cost driver in most estimating tools, yet size is one of the most difficult input parameters to estimate accurately.  The tool should include the capability to help estimate the size of the software development project, or at least help define a method for estimating the size.

	(7)	Provide accurate schedule estimates - As previously mentioned, schedule overruns are common and can be extremely costly.  The software estimating tool should be able to provide schedule estimates accurately.  The purpose of scheduling is not only to predict task completion given task sequence and available resources, but also to establish starting and ending dates for the associated work packages and life cycle phases.

	(8)	Provide maintenance estimates separately - The software estimating tool should be able to provide software maintenance estimates as a separate item.  Software maintenance includes such activities as correcting errors, modifying the software to accommodate changes in requirements, or extending and enhancing software performance.



Input Data Collection

	A very important aspect of software estimating is data collection.  Data must be collected for inputs to the parametric tool and tool verification, validation, customization, and calibration.

	Estimates generated by the tools are only as good as the input data used.  Careful analysis of all tool inputs are essential since small changes in input values can result in large variations in overall cost and schedules.

	Inputs vary between tools.  Before using a tool, review input requirements and information collected, documentation, and examples provided with the tool.  When possible, discuss these with individuals familiar with the tool.

	Using historical data as a basis for customizing or calibrating a tool is essential.  Insure that information for current project development efforts are saved for future reference.

	At a very minimum, use software life cycle model phases and activities as a basis for collecting and maintaining project development information for future tool use.



Some Commercial Tools

	There are many software estimating tools on the market today that provide software estimation support.  Some tools estimate the size of the software project, while others use size as an input and provide estimates of effort, schedule and cost.

	The tools presented in this handbook are not being recommended over other tools as each one has unique capabilities and limitations.  Therefore, organizations considering using estimating tools should review as many available tools as possible, analyze their software estimating needs, and then determine which tools are most appropriate to their application and development environment.  The list that follows is not all inclusive, and should not be considered complete.  The tools discussed are representative only, since there are many others that could be used.



	REVIC

	The Revised Enhanced Version of Intermediate COCOMO (REVIC) model was developed by Mr. Raymond L. Kile formerly of Hughes Aerospace.  The Air Force Contract Management Division, Air Force System Command, Kirtland Air Force Base, New Mexico, sponsored the development for use by its contract administrator.

	The main difference between REVIC and COCOMO is the coefficients used in the effort equations.  REVIC changed the coefficients based on a database of recently completed DOD projects.  It also uses a different method of distributing effort and schedule to each phase of product development, and applies an automatic calculation of standard deviation for risk assessment.

	REVIC provides a single "weighted average" distribution for effort and schedule along with the ability to let the user vary the percentages in the system engineering and development test and evaluation phases.  REVIC employs a different Ada model than Ada COCOMO.  The REVIC model has also been enhanced by using a Program Evaluation and Review Technique (PERT) statistical method for determining the lines of code to be developed.

	In addition to providing estimates for cost, manpower, and schedule, the program creates estimates for typical  DOD-STD-2167A/498 documentation sizing and long term software maintenance.  REVIC's schedule estimates are often considered lengthy because it assumes that a project's documentation and reviews comply with the full requirements of DOD-STD-2167A/498.  REVIC operates on PC compatible systems.



	PRICES

	The PRICES tool is distributed by Lockheed - Martin PRICE Systems.  This tool was first developed in 1977, and is considered one of the first complex commercially available tools used for software estimation.  The equations used by this tool are proprietary.  However, descriptions of the methodology algorithms used can be found in papers published by PRICE Systems.  A model describing the PRICES parametric tool is shown in Figure V-4.

�

FIGURE V - 4





	The PRICES tool is based on Cost Estimation Relationships (CERs) that make use of product characteristics in order to generate estimates.  CERs were determined by statistically analyzing completed projects where product characteristics and project information were known, or developed with expert judgment.

	A major input to PRICES is Source Lines of Code (SLOC).  Software size may be input directly, or automatically calculated from quantitative descriptions (function point sizing).  Other inputs include software function, operating environment, software reuse, complexity factors, productivity factors, and risk analysis factors.  Successful use of the PRICES tool depends on the ability of the user to define inputs correctly.  It can be customized and calibrated to the needs of the user.  It is now available for Windows and UNIX/Motif.



	SASET

	The Software Architecture, Sizing and Estimating Tool (SASET) was developed for DOD by the Martin Marietta Corporation.  SASET is a forward-chaining, rule-based expert system utilizing a hierarchiacally structured knowledge database.  The database is composed of projects with a wide range of applications.

	SASET provides functional software sizing values, development schedules, and associated man-loading outputs.  It provides estimates for all types of programs and all phases of the development cycle.  It also provides estimates for maintenance support and performs a risk assessment on sizing, scheduling, and budget data.

	SASET uses a five-tiered approach for estimating including class of software, source lines of code, software complexity, maintenance staff loading, and risk assessment.  The user can either input the program size directly or allow SASET to compute size, based on function-related inputs.  The tool also has an extensive customization file in which the user can adjust many parameters.  It operates on PC compatible systems.



	SEER-SEM

	System Evaluation and Estimation of Resources - Software Estimation Model (SEER-SEM) is distributed by Galorath Associates and is currently under a five year Air Force wide license agreement.  It provides software estimates with knowledge bases developed from many years of completed projects.

	The knowledge base allows estimates with only minimal high level inputs.  The user need only select the platform (i.e. ground, unmanned space, etc.), application (i.e. command and control, diagnostic), development methods (i.e. prototype, incremental), and development standards (i.e. 2167A/498).  SEER-SEM is applicable to all types of software projects and considers all phases of software development.

	SEER-SEM is designed to run on PC compatible systems running Microsoft Windows 3.0/3.1 (Air Force license includes MS-DOS version).  It is also available for the Apple MacIntosh running system 6.0.3 and above and the UNIX/SUN work station.

	A companion tool called the SEER-Software Sizing Model (SSM) is also distributed by Galorath Associates and is used to estimate the size of the software product.



	SLIM

	The Software Life Cycle Model (SLIM) is marketed by Quantitative Software (QSM).  SLIM was developed in 1979 by Mr. Larry Putnam.  Originally developed from analyses of ground-based radar programs, the SLIM tool has been expanded to include other types of programs.  It can be customized for the user's development environment.

	SLIM supports all phases of software development, except requirements analysis, as well as all sizes of software projects, but was especially designed to support large projects.

	Success in using SLIM depends on the user's ability to customize the tool to fit the software development environment and to estimate both a Productivity Index (a measure of the software developer's efficiency) and a Manpower Buildup Index (a measure of the software developer's staffing capability).  SLIM also provides a life cycle option which extrapolates development costs into the maintenance phase.

	A companion tool named SIZE Planner is also distributed by QSM and is used to estimate the size of the software product.

	QSM provides a training course and leases the tool via a time sharing service.  There is also a PC compatible version of SLIM that can be leased for a yearly fee.



	SOFTCOST-R

	SOFTCOST-R is a software estimating tool developed by Reifer Consultants, Inc. (RCI).  SOFTCOST-R is based upon the modeling work done by Dr. Robert Tausworthe of the Jet Propulsion Laboratory.  It contains a database of over 1500 data processing, scientific and real-time programs.  A key input is SLOC, which can be input directly or computed from Function Points.  SOFTCOST-R is applicable to all types of programs, however, it was specifically configured to estimate real-time and scientific software systems, and considers all phases of the software development cycle.

	The tool's primary input is SLOC, however, it also uses the same inputs and provides the same outputs as COCOMO which allows direct comparisons to be made.

	SOFTCOST-R has some unique inputs such as user and peer reviews, customer experience, and degree of standardization.  It also supports a standard WBS for task planning and scheduling.

	RCI provides SOFTCOST-Ada, which is a tool to estimate Ada and C++ development costs.  Softcost-Ada is a cost estimation tool specifically developed to estimate systems using object-oriented techniques.

	RCI also has a separate estimating tool called ASSET-R to estimate the size of the software product.  SOFTCOST-R, SOFTCOST-Ada, and ASSET-R are leased on an annual license basis, and require a PC compatible running DOS 2.3 or higher.



	SYSTEM-4

	SYSTEM-4 is marketed by Computer Economics, Inc. (CEI).  It contains a proprietary model that is based on the work of Jensen, Boehm, Putnam, and other noted software experts.

	SYSTEM-4 is applicable to all types of programs and all phases of the software life cycle.  Inputs consist of size (SLOC), twenty environmental factors, seven development factors, software type, and constraints.  This tool comes with 23 predefined default parameter files.  The default sets provide typical values for all parameters except size.  There are also seven parameter subset files for various implementations of DOD-STD-1703, DOD-STD-2167A/498, and varying degrees of Ada experience.

	The user must select one of the default sets and input the SLOC estimate to perform a quick estimate.  SYSTEM-4 can accommodate multiple CSCIs or tasks, and each task can be broken down into elements and units.  There is a limit of 64 tasks, 64 elements, and 64 units.  SYSTEM-4 can be customized to reflect the user's software development environment.

	CEI has a companion software size estimating tool called Computer Economics Incorporated Sizing (CEIS) System.  These tools operate on PC compatible systems.



Software Sizing Tools

	As discussed previously, a very important factor in estimating software development projects is the ability to estimate the size of the product.  Many software estimating tools use size in SLOC or functions performed as the major input.  Size is also considered by software development project managers as a major technical performance or productivity indicator that allows them to track the project during software development.

	The most commonly used method to estimate the size of a software product is by using both expert judgment and the analogy method.  The experts determine the functions the software will perform and estimate the size by comparing the new system to completed projects with similar characteristics.  Often, parametric methods are the used to precisely size the software.

	Estimating tools using analogy methods compare the new program to similar programs of known size.  Because past projects are not always exactly like the new project, the estimate is adjusted by a factor determined from experience.  These tools accept characteristics of new programs as inputs, then search a database for similar programs.  The tools either list the similar programs or provide an estimate of size based on an average of the size of the similar programs selected from the database.

	Expert judgment tools use the opinion of one or more experts to estimate the size of the program, or use structured questions designed to extract judgment from the experts.  These are the rule-based or expert system tools.

	Many tools use the algorithmic method by applying equations to determine size estimates.  A technique that is becoming very widely used is Function Point Analysis (FPA).  One problem with FPA is that it was developed for IS-oriented programs and does not take into consideration the number or complexity of algorithms in scientific and real-time programs.

	Many software estimating tools such as REVIC and SLIM use extensions of the Program Evaluation and Review Technique (PERT).  PERT is based on a beta distribution of estimates provided by the user and calculates expected size according to the equation:

	Expected Size = (S + 4(M) + L)/6

	where S, M, and L are estimates of the smallest size, most likely size, and the largest size, respectively.



	ASSET-R

	ASSET-R is a function point sizing tool developed to estimate the size of data processing, real-time, and scientific software systems, and is marketed by Reifer Consultants, Inc.  It utilizes a knowledge-based system which extends the theory of function points into scientific and real-time systems by considering issues like concurrence, synchronization, and reuse in its mathematical formulation.  The formulas use as many as nine parameters to develop function point counts.  It also couples function point and operand/operator counts with architectural, language expansion, and technology factors to generate the size estimate.  ASSET-R works with RCI's SOFTCOST-R and SOFTCOST-Ada software estimation tools.  It operates on PC compatible systems.



	CA-FPXpert

	CA-FPXpert is distributed by Computer Associates International, Inc.  It uses FPA for size estimation of IS type software projects, and conforms to accepted IFPUG standard counting practices.  It includes an on-line tutor to help the function point counting process.  CA-FPXpert works in conjunction with CA-ESTIMACS to provide software size estimation input, and operates on PC compatible systems.



	CEIS

	CEIS is marketed by Computer Economics, Inc. Estimates are generated by comparing the attributes of the new project to the attributes of three reference projects of known size.  The user determines any six attributes that contribute to the number of lines of code and ranks them in order of importance, then selects three reference projects of known size.  Separate algorithms are used to produce four independent estimates and to determine a level of confidence.  CEIS works in conjunction with SYSTEM-4, and operates on PC compatible systems.



	SIZEEXPERT

	SIZEEXPERT was developed by the Institute for Systems Analysis and is marketed by Technology Application/Engineering Corporation.  This tool is an expert judgment tool that produces estimates of liens of code based on questions asked by COSTEXPERT.  Both tools are packaged and distributed together, and operate on PC compatible systems.



	SEER-M

	SEER-M is marketed by Galorath Associates and is available to government personnel under and Air Force-wide contract.  It produces software size estimates in lines of code or function points.  It also provides its own historical database in producing the size estimate.  SEER-M works with SEER-SEM software estimating tool, and operates on PC compatible systems.

	Appendix F includes other currently available cost models, and discusses in more detail the most popular software estimating tools.



GLOSSARY OF TERMS



	Appendix A contains definitions of terms commonly used in software estimation technology.



MODEL CALIBRATION



	The act of calibration standardizes a model.  Many models are developed for specific situations and are, by definition, calibrated to that situation.  Such models usually are not useful outside of their particular environment.  However, general cost estimating models including commercially available ones such as the FAST, PRICE and SEER models (described earlier) are designed to be useful as estimating tools for a wide range of situations.  The act of calibration is needed to increase the accuracy of one of these general models by making it temporarily a specific model for whatever product it has been calibrated for.  Calibration is in a sense customizing a generic model.

	Items which can be calibrated in a model are:  product types, operating environments, labor rates and factors, various relationships between functional  cost items, and even the method of accounting used by a contractor.  All general models should be standardized (i.e. calibrated), unless used by an experienced modeler with the appropriate education, skills and tools, and experience in the technology being modeled.

	Calibration is the process of determining the deviation from a standard in order to compute the correction factors.  For cost estimating models, the standard is considered historical actual costs.  The calibration procedure is theoretically very simple.  It is simply running the model with normal inputs (known parameters such as software lines of code) against items for which the actual cost are known.  These estimates are then compared with the actual costs and the average deviation becomes a correction factor for the model.  In essence, the calibration factor obtained is really good only for the type of inputs that were used in the calibration runs.  For a general total model calibration, a wide range of components with actual costs need to be used.  Better yet, numerous calibrations should be performed with different types of components in order to obtain a set of calibration factors for the various possible expected estimating situations.  For instance, the PRICE Software Model addresses this situation using internal productivity factors.  These can be modified by the calibration process.



TRENDS AND CONCLUSIONS



Trends

	Advances in languages, development methodologies, and other areas will have to be addressed by future software cost estimating models and associated methodologies.  As software technology matures, changes in development and support concepts occur which will impact software cost estimating.  Concepts such as prototyping and spiral development present a challenge to cost estimation since normal software development cycles are altered.

	Artificial Intelligence (AI) represents a growing area of modern technology.  Since AI is software-intensive, proper management of AI software, including cost estimating, will be a challenge for software managers.  The development of software for expert system and other AI applications will probably require a different development process.

	The trend for the future will include better and more accurate ways of developing software estimating methodologies for:

	*  Software size estimates.

	*  Resource Estimates for maintenance and support.

	*  Incorporating the effects of Ada and new paradigms such as rapid prototyping and fourth generation languages.

	*  Modeling the dynamic interaction of variables that affect productivity, cost, and quality.

	*  Object-Oriented Design.



	The trend in software estimating tools is to provide a whole family of models which not only estimate cost and effort of software development, but hardware as well.  The tools are being upgraded to support higher-order languages such as Ada and C++.  The most significant improvement is the use of data collected from past software projects to customize the tool to an organization's environment.  This is especially true within agencies of DOD and NASA.



Conclusions

	This chapter has dis
